People/Web Search Calendar Emergency Info A-Z Index UVA Email University of Virginia

Skip to Content

Kyle Lampe

Assistant Professor

Ph.D., University of Colorado Boulder (2009)
B.S., Missouri University of Science and Technology (2004)

Email: lampe@virginia.edu
Website: Lampe Group Website

Honors and Awards

  • Postdoctoral Research Award from the Stanford University Postdoctoral Association (2012)
  • NIH Ruth L. Kirschstein National Research Service Award, Postdoctoral Fellowship (2010-2013)
  • Graduate Student Faculty Leadership Award, from the faculty of Chemical and Biological Engineering at the University of Colorado for service to the department (2008)
  • Achievement Rewards for College Scientists (ARCS) Scholar (2007, 2008)
  • University of Colorado Beverly Sears Graduate Student Grant (2006, 2008)
  • U.S. Dept. of Education Graduate Assistantship in Areas of National Need (2005-2008)

Research Interests

Neural tissue engineering, biomaterials, drug delivery, redox regulation of stem cell fate, engineering cell-interactive microenvironments

Research Description

Neural regeneration within the central nervous system (CNS) is a critical unmet challenge as CNS disorders continue to be the leading cause of disability nationwide. Engineers can provide a unique perspective in the design and development of materials for human health to help effectively translate them to the clinic. We propose an innovative combination of biomaterial-cell interactions drawing on aspects of engineering, stem cell biology, and neuroscience with a unifying theme of functional neural tissue engineering. Our overarching goal is to develop a new, integrated approach in building material systems that are both cell-instructive and cell-responsive, creating a dynamic feedback loop between a cell and its engineered microenvironment. Promising opportunities for discovery exist at the intersection of biomaterials, stem cells, and reactive oxygen species, and we anticipate combining them to cut a unique path as neural engineers.

New material platforms for neural tissues that can direct neural tissue maturation and function.
We are designing hydrogel materials using both synthetic polymer and recombinant protein strategies to recapitulate the neural stem cell niche and induce dynamic cell-material interactions. The problem of axon regeneration is far from being solved, but axons can extend over long distances in vitro and in vivo by using innovative combinations of tunable materials and physical architecture. While growth is a critical step in neural regeneration, a therapy is only obtained when these axon projections function correctly in signal transmission. We encapsulate both neurons and oligodendrocytes, the cells responsible for myelination of functional axons, and control the growth of each cell type in a tunable 3D environment to begin to recapitulate functional interactions.

Localized and controlled delivery of factors important to cell survival and function.
Delivery of protein therapeutics has been a target for neural regeneration in a host of CNS diseases and injuries including Parkinson's, Alzheimer's, spinal cord injury, and stroke, but their targeted, sustained delivery is a challenge to translational medicine due to fast clearance from the target site or degradation within a couple hours of delivery. We incorporate methods for spatial and temporal control of small molecule and large protein delivery via both passive diffusion and active, cell-controlled mechanisms.

Regulating cellular reduction/oxidation to influence stem cell survival, self-renewal, and differentiation in a tissue-like environment.
We are bringing an engineer's perspective to questions of redox biology. While disregulation of native reactive oxygen species (ROS)-scavenging enzymes within the cell is linked to a variety of disorders including Parkinson's and Alzheimer's disease, it is increasingly recognized that redox regulation within a cell is a critical signaling mechanism for cellular processes including survival, proliferation, differentiation, and cell motility. In a controlled hydrogel culture system we are harnessing the power of degradable materials to elucidate novel understandings of oxidant and antioxidant effects of biomaterials on cells, to manipulate the redox balance of encapsulated cells, and to positively bias cell fate. We hope that by modulating ROS insults in vivo and providing a permissive environment for transplanted cells by using a ROS-scavenging material, we may decrease secondary injury and greatly improve the efficacy of transplant cell therapy.

Selected Publications

KJ Lampe, AL Antaris, SC Heilshorn "Design of 3D engineered protein hydrogels for tailored control of neurite growth," Acta Biomaterialia, 9: 5590-5599 (2013) (link).

C Chung, KJ Lampe, SC Heilshorn "Tetrakis (hydroxyl methyl) phosphonium chloride as a covalent crosslinking agent for cell encapsulation within protein-based hydrogels," Biomacromolecules, 13: 3912-3916 (2012) (link).

KJ Lampe, SC Heilshorn "Building stem cell niches from the molecule up through engineered peptide materials," Neuroscience Letters, 519: 138-146 (2012) (link).

BA Aguado, W Mulyasasmita, J Su, KJ Lampe, SC Heilshorn, "Improving viability of stem cells during syringe needle flow through the design of hydrogel cell carriers," Tissue Engineering Part A, 18: 806-815 (2012) (link).

KJ Lampe, DS Kern, MJ Mahoney, KB Bjugstad, "The administration of BDNF and GDNF to the brain via PLGA microparticles patterned within a degradable PEG-based hydrogel: protein distribution and the glial response," Journal of Biomedical Materials Research Part A, 96A: 595-607 (2011) (link).

KJ Lampe, RG Mooney, KB Bjugstad, MJ Mahoney, "Effect of macromer weight percent on neural cell growth in 2D and 3D nondegradable PEG hydrogel culture," Journal of Biomedical Materials Research Part A: 94A, 1162-1171 (2010) (link).

KJ Lampe, KB Bjugstad, MJ Mahoney, "Impact of degradable macromer content in a poly(ethylene glycol) hydrogel on neural cell metabolic activity, redox state, proliferation, and differentiation," Tissue Engineering Part A, 16:1857-1866 (2010) (link).

KB Bjugstad, DE Redmond, KJ Lampe, DS Kern, JR Sladek Jr, MJ Mahoney, "Biocompatibility of PEG-Based Hydrogels in Primate Brain," Cell Transplantation, 17:409-417 (2008) (link).